

LS, JK, and jj Atomic Spectroscopic Terms and Spectroscopic Terms for small molecules

Roberto B. Faria

faria@iq.ufrj.br www.iq.ufrj.br/~faria Instituto de Química Universidade Federal do Rio de Janeiro

LS (Russell-Saunders) coupling

XXI Brazilian Meeting on Inorganic Chemistry, BMIC-2024 X Brazilian Meeting on Rare Earths, BMRE-2024 III Workshop on Theoretical Bioinorganic Chemistry, WTBC-2024 September 12th - 15th, 2024

The noblest pleasure is the joy of understanding.

Leonardo da Vinci

References

Basic books

Any book on inorganic chemistry

- Weller, M.; Overton, T.; Rourke, J.; Armstrong, F. *Inorganic Chemistry*, 6th ed., Oxford University Press, 2014.

- Miessler, G. L.; Tarr, D. A. *Inorganic Chemistry*, 4th ed., Prentice-Hall, 2010.

- Douglas, B. E.; McDaniel, D. H.; Alexander, J. J. *Concepts and Models of Inorganic Chemistry*, 3rd. ed., John Wiley & Sons, Inc, 1994.

Basic books

Any book on inorganic chemistry

- Pfennig, B. W. *Principles of Inorganic Chemistry*, Wiley, 2015.

Basic books

Any book on physical chemistry

- Pilar, F. L. *Elementary Quantum Chemistry*, McGraw-Hill Book Company, 1968.

- Levine, I. N. *Quantum Chemistry*, 4th ed., Prentice-Hall, 1991.

Advanced books

- Harris, D. C.; Bertolucci, M. D. Symmetry and Spectroscopy, Oxford, 1978

- Cowan, R. D. *The Theory of Atomic Structure and Spectra*, University of California Press, 1981.

- Bernath, P. F. *Spectra of Atoms and Molecules*, 3rd, ed., Oxford University Press, 2016.

Articles on *LS* coupling

- Russell, H. N. On the calculation of the spectroscopic terms derived from equivalent electrons, *Phys. Rev.* **1927**, *29*(6), 782-789. DOI: 10.1103/PhysRev.29.782

- Gibbs, R. C.; Wilber, D. T.; White, H. E. Terms arising from similar and dissimilar electrons, *Phys. Rev.* **1927**, *29*, 790-793. DOI: 10.1103/PhysRev.29.790

- Hyde, K. E. Methods for Obtaining Russell-Sauders Term Symbols from Electronic configurations, *J. Chem. Educ.* **1975**, *52*, 87–89. DOI: 10.1021/ed052p87

Articles on jj coupling

- Gauerke, E. S. J.; Campbell, M. L. A Simple, Systematic Method for Determining J Levels for jj Coupling, *J. Chem. Educ.* **1994**, *71*, 457-463. DOI: 10.1021/ed071p457

- Haigh, C. W. The Theory of Atomic Spectroscopy: jj Coupling, Intermediate Coupling, and Configuration Interaction, *J. Chem. Educ.* **1995**, *72*, 206-210. DOI: 10.1021/ed072p206

- Campbell, M. L. Rules for Determining the Ground State of a *j-j* Coupled Atom, *J. Chem. Educ.* **1998**, *75*, 1339-1340. DOI: 10.1021/ed075p1339

Articles on jj coupling

- Orofino, H.; Faria, R. B. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj, *J. Chem. Educ.* **2010**, *87*, 1451-1454. DOI: 10.1021/ed1004245

LS and jj comparison

- Dias, L. A. L.; Cardozo, T. M.; Faria, R. B. The Role of jj Coupling on the Energy Levels of Heavy Atoms, *Quim. Nova* **2025**, *48*(1):e-20250006, 1-7. DOI: 10.21577/0100-4042.20250006

Site for energy levels and line spectra of elements and ions

NIST, National Institute of Standard and Technology, Atomic Spectra Database, https://www.nist.gov/pml/atomic-spectra-database

Russell-Sauders coupling

The interaction between the vectors spin angular momentum of an electron (s) and its own orbital angular momentum (ℓ) is called **spin-orbit coupling**.

In the *LS* coupling case, the electrostatic interactions (Coulomb interaction) between electrons are much stronger than the spin-orbit coupling.

The LS coupling is more appropriate for light elements.

The *LS* coupling is based on the atom

- angular orbital momentum
- angular spin momentum
- total angular momentum

Angular momentum

Angular momentum in quantum mechanics

$$|\vec{l}| = \sqrt{l(l+1)} \frac{h}{2\pi} \qquad |\vec{L}| = \sqrt{L(L+1)} \frac{h}{2\pi}$$
$$|\vec{s}| = \sqrt{s(s+1)} \frac{h}{2\pi} \qquad |\vec{S}| = \sqrt{S(S+1)} \frac{h}{2\pi}$$
$$|\vec{j}| = \sqrt{j(j+1)} \frac{h}{2\pi} \qquad |\vec{J}| = \sqrt{J(j+1)} \frac{h}{2\pi}$$

Angular momentum

$$\theta = \cos^{-1} \left(\frac{m_l}{\sqrt{l(l+1)}} \right)$$

Quantum numbers

- the orbital angular momentum of the atom, \boldsymbol{L}
- the spin angular momentum of the atom, S
- total the total angular momentum of the atom, \boldsymbol{J}

 $2\overline{\mathrm{S}}+1\overline{\mathrm{L}}_J$

spin multiplicity = 2S+1

0 1 2 3 4 5 6 7 8 9 10 11... *l* (for electrons) s p d f g h i k 1 m n o... *L* (for atoms) S P D F G H I K L M N O...

j and J are intentionally missing

Each term symbol corresponds to an energy level of the atom.

Configuration	Term	J	g	Level (cm ⁻¹)
2s ² 2p ²	³ Р	0	1	0.0000000
		1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	1D	2	5	10 192.657
2s ² 2p ²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121
2s ² 2p3s	³ P°	0	1	60 333.4476
		1	3	60 352.6584
		2	5	60 393.1693
2s ² 2p3s	¹ P°	1	3	61 981.83211
2s2p ³	³ D°	3	7	64 086.96961
		1	3	64 089.8990
		2	5	64 090.99351

Configuration	Term	J	g	Level (cm ⁻¹)
$2s^22p^2$	ЗP	0	1	0.000000
		1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	¹ D	2	5	10 192.657
2s²2p²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121

Douglas and McDaniel method

- 1. Built the microstates
- 2. Add the m_1 values to obtain a M_L value
- 3. Compute all possible $M_{\rm S}$ values as $\Sigma m_{\rm s}$
- 4. Built the ocorrence table
- 5. Extract the terms

Building the microstates

$m_l = 1$	$m_l = 0$	$m_l = -1$	$M_L = \sum m_l$	$M_s = \sum m_s$
	p_z			
ХХ			2	0
	ХХ		0	0
		хх	-2	0
х	Х		1	1, 0, 0, -1
х		Х	0	1, 0, 0, -1
	х	Х	-1	1, 0, 0, -1

Computing all possible $M_{\rm S}$ values as $\Sigma m_{\rm s}$

Counting the microstates

	$M_S = 1$	$M_s = 0$	$M_{s} = -1$
$M_L = 2$		1	
$M_{L} = 1$	1	2	1
$M_{L} = 0$	1	3	1
$M_L = -1$	1	2	1
$M_L = -2$		1	

The vector model

Extracting the term symbols

	$M_S = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 2$		1	
$M_{L} = 1$	1	2	1
$M_{L} = 0$	1	3	1
$M_L = -1$	1	2	1
$M_L = -2$		1	

In the column $M_{\rm S} = 0$ we see that $M_{\rm L}$ spans from 2 to -2, indicating that L = 2, which corresponds to a term D

The vector model

Extracting the term symbols

	$M_S = 1$	$M_{S} = 0$	$M_{s} = -1$
$M_L = 2$		1	
$M_L = 1$	1	2	1
$M_{L} = 0$	1	3	1
$M_L = -1$	1	2	1
$M_L = -2$		1	

For L = 2, only the column $M_S = 0$ is used. It means that S = 0 and the spin multiplicity 2S + 1 = 1, a singlet state, indicated by the term symbol ¹D

Obtaining the J values

The total angular momentum J may have several values in the range

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 2 and S = 0, the unique value for J is 2, given the term symbol

 D_{γ}

Configuration	Term	J	g	Level (cm ⁻¹)
$2s^22p^2$	ЗP	0	1	0.000000
		1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	¹ D	2	5	10 192.657
2s²2p²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121

Removing the contribution of ${}^{1}D_{2}$ term from the central column we obtain

	$M_s = 1$	$M_s = 0$	$M_{s} = -1$
$M_L = 2$			
$M_{L} = 1$	1	1	1
$M_{L} = 0$	1	2	1
$M_L = -1$	1	1	1
$M_L = -2$			

All lines go from $M_L = 1$ until $M_L = -1$, indicating a value of L = 1, which corresponds to a **P** symbol.

The vector model

Extracting the term symbols

	$M_S = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 2$			
$M_{L} = 1$	1	1	1
$M_L = 0$	1	2	1
$M_L = -1$	1	1	1
$M_L = -2$			

All columns go from $M_S = 1$ until $M_S = -1$, indicating a value of S = 1, and the spin multiplicity 2S + 1 = 3, a triplet state, indicated by the term symbol ³P

Obtaining the J values

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 1 and S = 1, the *J* values are 2, 1, and 0, resulting in the term symbol

 ${}^{3}P_{2,1,0}$

LS terms for carbon

Configuration	Term	J	g	Level (cm ⁻¹)
$2s^22p^2$	ЗP	0	1	0.000000
		1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	¹ D	2	5	10 192.657
2s²2p²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121

Extracting the term symbols

	$M_{S} = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 2$			
$M_{L} = 1$			
$M_{L} = 0$		1	
$M_L = -1$			
$M_L = -2$			

As the unique line has the value $M_L = 0$, it means that L = 0, which corresponds to a **S** symbol.

The vector model

Extracting the term symbols

	$M_{S} = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 2$			
$M_{L} = 1$			
$M_{L} = 0$		1	
$M_L = -1$			
$M_L = -2$			

As only the column used has the value $M_s = 0$, it means that S = 0 and the spin multiplicity, 2S + 1 = 1, a singlet state, which gives the term symbol ¹S.

Obtaining the J values

The total angular momentum J may have several values in the range

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 0 and S = 0, the unique J value is 0, and the resulting term symbol is

S

Colecting all terms

$${}^{1}D_{2} {}^{3}P_{2,1,0} {}^{1}S_{0}$$

LS terms for carbon

Configuration	Term	J	g	Level (cm ⁻¹)
$2s^22p^2$	ЗP	0	1	0.000000
		1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	¹ D	2	5	10 192.657
2s²2p²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121

Hund's rules

- Hund's rules are empirical rules which are valid only for the lowest energy term.

- The Hund's rules are applied once to determine the lower energy term, and cannot be applied to other terms of higher energy.

Hund's rules

1) The term with the highest spin multiplicity is the lower energy term.

2) For electronic configurations less than half filled, the lower *J* has the lower energy.

As a result, the lowest energy term is ³P₀
The sequency of energy of the other terms can be determined by other methods, but not by the use of the Hund's rules

Energy levels for a p^2 electronic configuration

LS terms for carbon

Configuration	Term	J	g	Level (cm ⁻¹)
$2s^22p^2$	ЗP	0	1	0.000000
		1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	¹ D	2	5	10 192.657
2s²2p²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121

The Landé interval rule

The separation between different levels in a multiplet is proportional to the highest *J* value.

LS terms for carbon

Configuration	Term	J	g	Level (cm ⁻¹)
2s ² 2p ²	³ Р	0	1	0.0000000
	101	1	3	16.4167130
		2	5	43.4134567
2s ² 2p ²	1D	2	5	10 192.657
2s ² 2p ²	1S	0	1	21 648.030
2s2p ³	⁵ S°	2	5	33 735.121
2s ² 2p3s	³ P°	0	1	60 333.4476
		1	3	60 352.6584
		2	5	60 393.1693
2s ² 2p3s	¹ P°	1	3	61 981.83211
2s2p ³	³ D°	3	7	64 086.96961
		1	3	64 089.8990

Landé interval $16,416 = \lambda$ $16,416 \times 2 = 32,832 = 2\lambda$ $43,413 - 16,416 = 26,997 = 2\lambda$ $26,997 / 2 = 13,498 = \lambda$

$m_l = 2$	$m_l = 1$	$m_l = 0$	$m_l = -1$	$m_l = -2$	$M_L = \sum m_l$	$M_{S} = \sum m_{s}$
ХХ					4	0
	ХХ				2	0
		ХХ			0	0
			ХХ		-2	0
				ХХ	-4	0
Х	Х				3	1,0,0,-1
x		Х			2	1,0,0,-1
х			Х		1	1,0,0,-1
X				Х	0	1,0,0,-1
	Х	Х			1	1,0,0,-1
	X		Х		0	1,0,0,-1
	Х			Х	-1	1,0,0,-1
		Х	Х		-1	1,0,0,-1
		Х		Х	-2	1,0,0,-1
			Х	Х	-3	1,0,0,-1

Building the microstates

Counting the microstates

	$M_S = 1$	$M_s = 0$	$M_{S} = -1$
$M_{L} = 4$		1	
$M_{L} = 3$	1	2	1
$M_{L} = 2$	1	3	1
$M_{L} = 1$	2	4	2
$M_L = 0$	2	5	2
$M_L = -1$	2	4	2
$M_{L} = -2$	1	3	1
$M_{L} = -3$	1	2	1
$M_L = -4$		1	

In the column $M_{\rm S} = 0$ we see that $M_{\rm L}$ spans from 4 to -4, indicating that L = 4, which corresponds to a term **G**

 $2\overline{S}^{+1}L_{J}$

spin multiplicity = 2S+1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 ...

 l (for electrons)
 s
 p
 d
 f
 g
 h
 i
 k
 1
 m
 n
 ...

 L (for atoms)
 S
 P
 D
 F
 G
 H
 I
 K
 L
 M
 N
 O...

j and J are intentionally missing

Extracting the term symbol

	$M_S = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 4$		1	
$M_L = 3$	1	2	1
$M_L = 2$	1	3	1
$M_L = 1$	2	4	2
$M_L = 0$	2	5	2
$M_L = -1$	2	4	2
$M_{L} = -2$	1	3	1
$M_{L} = -3$	1	2	1
$M_L = -4$		1	

For L = 4, only the column $M_S = 0$ is used. It means that S = 0 and the spin multiplicity 2S + 1 = 1, a singlet state, indicated by the term symbol ¹G

Obtaining the J values

The total angular momentum J may have several values in the range

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 4 and S = 0, the unique J value is 4, and the resulting term symbol is

G

Removing the contribution of ${}^{1}G_{4}$ term from the central column

	$M_{S} = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 4$			
$M_L = 3$	1	1	1
$M_L = 2$	1	2	1
$M_L = 1$	2	3	2
$M_L = 0$	2	4	2
$M_L = -1$	2	3	2
$M_L = -2$	1	2	1
$M_{L} = -3$	1	1	1
$M_L = -4$			

All lines go from $M_L = 3$ until $M_L = -3$, indicating a value of L = 3, which corresponds to a F symbol.

Extracting the term symbol

	$M_s = 1$	$M_{S} = 0$	$M_{s} = -1$
$M_{L} = 4$			
$M_{L} = 3$	1	1	1
$M_{L} = 2$	1	2	1
$M_L = 1$	2	3	2
$M_L = 0$	2	4	2
$M_L = -1$	2	3	2
$M_L = -2$	1	2	1
$M_L = -3$	1	1	1
$M_L = -4$			

All columns go from $M_S = 1$ until $M_S = -1$, indicating a value of S = 1, and the spin multiplicity 2S + 1 = 3, a triplet state, indicated by the term symbol ³F

Obtaining the J values

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 3 and S = 1, the J values are 4, 3, and 2, resulting in the term symbol

 ${}^{3}F_{4,3,2}$

Removing the contribution of ${}^{3}F_{4,3,2}$ term from all columns

	$M_S = 1$	$M_s = 0$	$M_{s} = -1$
$M_{L} = 4$			
$M_{L} = 3$			
$M_{L} = 2$		1	
$M_{L} = 1$	1	2	1
$M_L = 0$	1	3	1
$M_{L} = -1$	1	2	1
$M_{L} = -2$		1	
$M_L = -3$			
$M_L = -4$			

This is the same counting table obtained for the p^2 electronic configuration, which has the terms ${}^{1}D_{2}$, ${}^{3}P_{2,1,0}$, and ${}^{1}S_{0}$.

Colecting all terms

${}^{1}G_{4} \ {}^{3}F_{4,3,2} \ {}^{1}D_{2} \ {}^{3}P_{2,1,0} \ {}^{1}S_{0}$

Hund's rules

1) The term with the highest spin multiplicity is the lower energy term.

2) For electronic configurations less than half filled, the lower J has the lower energy.

3) When there are more than one term with the highest spin multiplicity, the term with the highest L value is the term with the lowest energy.

- As a result, the lowest energy term is the ${}^{3}F_{2}$ term.

 $2\overline{S}^{+1}L_{J}$

spin multiplicity = 2S+1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 ...

 l (for electrons)
 s
 p
 d
 f
 g
 h
 i
 k
 1
 m
 n
 ...

 L (for atoms)
 S
 P
 D
 F
 G
 H
 I
 K
 L
 M
 N
 O...

j and J are intentionally missing

s^1	${}^{2}S_{1/2}$
s^2	$^{1}S_{0}$
p ¹ , p ⁵	${}^{2}\mathrm{P}_{3/2,1/2}^{o}$
p ² , p ⁴	${}^{3}P_{2,1,0} {}^{1}D_{2} {}^{1}S_{0}$
p ³	${}^{4}S_{3/2}{}^{\circ}{}^{2}D_{5/2,3/2}{}^{\circ}{}^{2}P_{3/2,1/2}{}^{\circ}$
p ⁶	$^{1}S_{0}$
d^1, d^9	$^{2}\mathrm{D}_{5/2,3/2}$
d^2, d^8	${}^{3}F_{4,3,2} \; {}^{3}P_{2,1,0} \; {}^{1}G_{4} \; {}^{1}D_{2} \; {}^{1}S_{0}$
d ³ , d ⁷	${}^{4}F_{9/2,7/2,5/2,3/2} \ {}^{4}P_{5/2,3/2,1/2} \ {}^{2}H_{11/2,9/2} \ {}^{2}G_{9/2,7/2} \ {}^{2}F_{7/2,5/2} \ {}^{2}D(2)_{5/2,3/2} \ {}^{2}P_{3/2,1/2}$
d^4, d^6	${}^{5}D_{4,3,2,1,0} {}^{3}H_{6,5,4} {}^{3}G_{5,4,3} {}^{3}F(2)_{4,3,2} {}^{3}D_{3,2,1} {}^{3}P(2)_{2,1,0} {}^{1}I_{6} {}^{1}G(2)_{4} {}^{1}F_{3} {}^{1}D(2)_{2} {}^{1}S(2)_{0}$
d ⁵	${}^{6}S_{5/2} {}^{4}G_{11/2,9/2,7/2,5/2} {}^{4}F_{9/2,7/2,5/2,3/2} {}^{4}D_{7/2,5/2,3/2,1/2} {}^{4}P_{5/2,3/2,1/2} {}^{2}I_{13/2,11/2} \\ {}^{2}H_{11/2,9/2} {}^{2}G(2)_{9/2,7/2} {}^{2}F(2)_{7/2,5/2} {}^{2}D(3)_{5/2,3/2} {}^{2}P_{3/2,1/2} {}^{2}S_{1/2} \\$
d ¹⁰	${}^{1}S_{0}$

f ¹ , f ¹³	² F ^o
f^2, f^{12}	³ H ³ F ³ P ¹ I ¹ G ¹ D ¹ S
f^{3}, f^{11}	${}^{4}I^{o} \; {}^{4}G^{o} \; {}^{4}F^{o} \; {}^{4}D^{o} \; {}^{4}S^{o} \; {}^{2}L^{o} \; {}^{2}K^{o} \; {}^{2}I^{o} \; {}^{2}H^{o}(2) \; {}^{2}G^{o}(2) \; {}^{2}F^{o}(2) \; {}^{2}D^{o}(2) \; {}^{2}P^{o}(2) \; {}^{2}P^{o}$
f^4, f^{10}	${}^{5}I {}^{5}G {}^{5}F {}^{5}D {}^{5}S {}^{3}M {}^{3}L {}^{3}K(2) {}^{3}I(2) {}^{3}H(4) {}^{3}G(3) {}^{3}F(4) {}^{3}D(2) {}^{3}P(3)$ ${}^{1}N {}^{1}L(2) {}^{1}K {}^{1}I(3) {}^{1}H(2) {}^{1}G(4) {}^{1}F {}^{1}D(4) {}^{1}S(2)$
f ⁵ , f ⁹	${}^{6}\mathrm{H}^{\circ}\;{}^{6}\mathrm{F}^{\circ}\;{}^{6}\mathrm{P}^{\circ}\;{}^{4}\mathrm{M}^{\circ}\;{}^{4}\mathrm{L}^{\circ}\;{}^{4}\mathrm{K}^{\circ}(2)\;{}^{4}\mathrm{I}^{\circ}(3)\;{}^{4}\mathrm{H}^{\circ}(3)\;{}^{4}\mathrm{G}^{\circ}(4)\;{}^{4}\mathrm{F}^{\circ}(4)\;{}^{4}\mathrm{D}^{\circ}(3)$ ${}^{4}\mathrm{P}^{\circ}(2)\;{}^{4}\mathrm{S}^{\circ}\;{}^{2}\mathrm{O}^{\circ}\;{}^{2}\mathrm{N}^{\circ}\;{}^{2}\mathrm{M}^{\circ}(2)\;{}^{2}\mathrm{L}^{\circ}(3)\;{}^{2}\mathrm{K}^{\circ}(5)\;{}^{2}\mathrm{I}^{\circ}(5)\;{}^{2}\mathrm{H}^{\circ}(7)\;{}^{2}\mathrm{G}^{\circ}(6)$ ${}^{2}\mathrm{F}^{\circ}(7)\;{}^{2}\mathrm{D}^{\circ}(5)\;{}^{2}\mathrm{P}^{\circ}(4)$
f ⁶ , f ⁸	${}^{7}F {}^{5}L {}^{5}K {}^{5}I(2) {}^{5}H(2) {}^{5}G(3) {}^{5}F(2) {}^{5}D(3) {}^{5}P {}^{5}S {}^{3}O {}^{3}N {}^{3}M(3) {}^{3}L(3)$ ${}^{3}K(6) {}^{3}I(6) {}^{3}H(9) {}^{3}G(7) {}^{3}F(9) {}^{3}D(5) {}^{3}P(6) {}^{1}Q {}^{1}N(2) {}^{1}M(2) {}^{1}L(4)$ ${}^{1}K(3) {}^{1}I(7) {}^{1}H(4) {}^{1}G(8) {}^{1}F(4) {}^{1}D(6) {}^{1}P {}^{1}S(4)$
f ⁷	$ {}^{8}S^{\circ 6}I^{\circ 6}H^{\circ 6}G^{\circ 6}F^{\circ 6}D^{\circ 6}P^{\circ 4}N^{\circ 4}M^{\circ 4}L^{\circ}(3) {}^{4}K^{\circ}(3) {}^{4}I^{\circ}(5) {}^{4}H^{\circ}(5) \\ {}^{4}G^{\circ}(7) {}^{4}F^{\circ}(5) {}^{4}D^{\circ}(6) {}^{4}P^{\circ}(2) {}^{4}S^{\circ}(2) {}^{2}Q^{\circ 2}O^{\circ 2}N^{\circ}(2) {}^{2}M^{\circ}(4) {}^{2}L^{\circ}(5) \\ {}^{2}K^{\circ}(7) {}^{2}I^{\circ}(9) {}^{2}H^{\circ}(9) {}^{2}G^{\circ}(10) {}^{2}F^{\circ}(10) {}^{2}D^{\circ}(7) {}^{2}P^{\circ}(5) {}^{2}S^{\circ}(2) $
f ¹⁴	$^{1}S_{0}$

Parity indication

In the cases that the sum of ℓ values for all electrons is equal to an odd number, the term symbol is

 $^{2S+1}L_{J}^{\circ}$

Examples

$$p^{1} \rightleftharpoons {}^{2}P_{3/2,1/2}^{\circ} p^{3} \rightrightarrows {}^{4}S_{3/2}^{\circ} {}^{2}D_{5/2,3/2}^{\circ} {}^{2}P_{3/2,1/2}^{\circ} f^{1} \rightrightarrows {}^{2}F_{7/2,5/2}^{\circ}$$

Non equivalent electrons configurations. The case s^1p^1 - building the microstates

s orbital	p orbitals				
$m_l = 0$	$m_l = 1$	$m_l = 0$	$m_l = -1$	$M_L = \sum m_l$	$M_s = \sum m_s$
		p_z			
х	х			1	1, 0, 0, -1
х		X		0	1, 0, 0, -1
х			Х	-1	1, 0, 0, -1

Counting the microstates

	$M_{s} = 1$	$M_{S} = 0$	$M_{S} = -1$
$M_L = 1$	1	2	1
$M_L = 0$	1	2	1
$M_L = -1$	1	2	1

In all columns M_L spans from 1 to -1, indicating L = 1and a term **P**

Extracting the terms

	$M_{S} = 1$	$M_s = 0$	$M_{S} = -1$
$M_L = 1$	1	2	1
$M_L = 0$	1	2	1
$M_L = -1$	1	2	1

If we consider all columns, M_S spans from 1 to -1, indicating an S value equal to 1, and 2S+1 = 3, which results in a triplet state term ³P

Obtaining the J values

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 1 and S = 1, the *J* values are 2, 1, and 0, resulting in the term symbol

$${}^{3}P_{2,1,0}$$

The parity symbol indicates that the sum of all ℓ is an odd number (s + p; 0 + 1 = 1).

LS coupling - s¹p¹ electronic configuration

Removing the contributions of the ³P term from all columns

	$M_{s} = 1$	$M_{S} = 0$	$M_{s} = -1$
$M_L = 1$		1	
$M_L = 0$		1	
$M_L = -1$		1	

- In all columns M_L spans from 1 to -1, indicating L = 1 and a term **P**
- In the central column $M_{\rm S} = 0$, indicating S = 0, 2S+1 =
- 1, a singlet state, which results in the term ¹P

Obtaining the J values

 $J = L + S, L + S - 1, L + S - 2, \dots, |L - S|$

As L = 1 and S = 0, the unique J value is 1, resulting in the term symbol

 ${}^{1}P_{1}^{\circ}$

The parity symbol indicates that the sum of all ℓ is an odd number (s + p; 0 + 1 = 1).
LS coupling - s^1d^1 electronic configuration

Colecting all terms

 ${}^{3}P_{2,1,0} {}^{\circ} {}^{1}P_{1} {}^{\circ}$

LS coupling - non equivalent electrons

ns ¹ n's ¹	¹ S ³ S
s ¹ p ¹ , s ¹ p ⁵	¹ P ^o ³ P ^o
$s^{1}d^{1}, s^{1}d^{9}$	¹ D ³ D
s ¹ f ¹ , s ¹ f ¹³	${}^{1}F^{o} {}^{3}F^{o}$
np ¹ n'p ¹ , np ¹ n'p ⁵ ,	¹ S ¹ P ¹ D ³ S ³ P ³ D
np ⁵ n'p ⁵	
p^1d^1 , p^1d^9 , p^5d^1 , p^5d^9	${}^{1}P^{o} {}^{1}D^{o} {}^{1}F^{o} {}^{3}P^{o} {}^{3}D^{o} {}^{3}F^{o}$
p ¹ f ¹ , p ¹ f ¹³ , p ⁵ f ¹ , p ⁵ f ¹³	¹ D ¹ F ¹ G ³ D ³ F ³ G

- As the terms for $p^1 = p^5$ and $d^1 = d^9$, the terms for p^1d^1 , p^1d^9 , p^5d^1 , and p^5d^9 are the same.

nd ¹ n'd ¹ , nd ⁹ n'd ¹ ,	¹ S ¹ P ¹ D ¹ F ¹ G ³ S ³ P ³ D ³ F ³ G
nd ⁹ n′d ⁹	
$d^{1}f^{1}, d^{1}f^{13}, d^{9}f^{1}, d^{9}f^{13}$	${}^{1}P^{o} {}^{1}D^{o} {}^{1}F^{o} {}^{1}G^{o} {}^{1}H^{o} {}^{3}P^{o} {}^{3}D^{o} {}^{3}F^{o} {}^{3}G^{o} {}^{3}H^{o}$
nf ¹ n'f ¹ , nf ¹ n'f ¹³	¹ S ¹ P ¹ D ¹ F ¹ G ¹ H ¹ I ³ S ³ P ³ D ³ F ³ G ³ H ³ I
$ns^{1}n's^{1}n''s^{1}$	$^{2}S(2)$ ^{4}S
$ns^{1}n's^{1}p^{1}$, $ns^{1}n's^{1}p^{5}$	$^{2}P^{o}(2)$ $^{4}P^{o}$
$ns^1n's^1d^1$, $ns^1n's^1d^9$	² D(2) ⁴ D
s ¹ np ¹ n'p ¹ , s ¹ np ¹ n'p ⁵ ,	² S(2) ⁴ S ² P(2) ⁴ P ² D(2) ⁴ D
s ¹ np ⁵ n'p ⁵	
s ¹ p ¹ d ¹ , s ¹ p ⁵ d ¹ , s ¹ p ¹ d ⁹ ,	$^{2}P^{o}(2) \ ^{4}P^{o} \ ^{2}D^{o}(2) \ ^{4}D^{o} \ ^{2}F^{o}(2) \ ^{4}F^{o}$
s ¹ p ⁵ d ⁹	
$np^{1}n'p^{1}n''p^{1},$	${}^{2}S(2)$ ${}^{4}S$ ${}^{2}P(6)$ ${}^{4}P(3)$ ${}^{2}D(4)$ ${}^{4}D(2)$ ${}^{2}F(2)$ ${}^{4}F$
$np^{1}n'p^{1}n''p^{5}$,	
$np^{1}n'p^{5}n''p^{5},$	
np ⁵ n'p ⁵ n"p ⁵	
$np^{1}n'p^{1}d^{1}, np^{1}n'p^{5}d^{1},$	² S(2) ⁴ S ² P(4) ⁴ P(2) ² D(6) ⁴ D(3) ² F(4) ⁴ F(2) ² G(2) ⁴ G
$np^1n'p^1d^9$, $np^1n'p^5d^9$	
s ¹ p ²	${}^{4}\mathrm{P}_{5/2,3/2,1/2} {}^{2}\mathrm{D}_{5/2,3/2} {}^{2}\mathrm{P}_{3/2,1/2} {}^{3}\mathrm{S}_{1/2}$
s ¹ p ³	${}^{5}S_{2}{}^{o}{}^{3}D_{3,2,1}{}^{o}{}^{3}P_{2,1,0}{}^{o}{}^{3}S_{1}{}^{o}{}^{1}D_{2}{}^{o}{}^{1}P_{1}{}^{o}$
$s^{1}d^{2}, s^{1}d^{8}$	⁴ F ⁴ P ² G ² F ² D ² P ² S

LS coupling - application to determine the electronic configuration

- The ground state of Cu, Ag, and Au is a singlet. Determine the electronic configuration of these elements.

Cu possible electronic configurations are $4s^2 3d^9 \qquad {}^2D_{5/2,3/2}$ $4s^1 3d^{10} \qquad {}^2S_{1/2}$ (singlet; it is a false dublet) $4s^0 3d^{10} 4p^1 \qquad {}^2P_{3/2,1/2}^{0}$

As a conclusion, the electronic configuration for Cu is 4s¹ 3d¹⁰. Similarly, the electronic configurations for Ag and Au are 5s¹ 4d¹⁰ and 6s¹ 5d¹⁰, respectively.

LS coupling - application to determine the electronic configurations

- Ground state terms

$$Ni = {}^{3}F_{4} \quad Pd = {}^{1}S_{0} \quad Pt = {}^{3}D_{3}$$

 $\begin{array}{cccccccc} Possible electronic configurations and terms \\ s^2 d^8 & {}^3F_{4,3,2} & {}^3P_{2,1,0} & {}^1G_4 & {}^1D_2 & {}^1S_0 \\ s^1 d^9 & {}^3D_{3,2,1} & {}^1D_2 \\ s^0 d^{10} & {}^1S_0 \end{array}$

As a conclusion, the electronic configurations are

 $Ni = 4s^2 3d^8$ $Pd = 5s^0 4d^{10}$ $Pt = 6s^1 5d^9$

LS coupling - application to label electronic transitions

LS coupling - application to label electronic transitions

Selection Rules Electric dipole allowed electronic transitions

LS coupling

 $T \leftrightarrow T^{\circ}$ $\Delta S = 0$ $\Delta L = 0, \pm 1$ $\Delta J = 0, \pm 1 (0 \leftrightarrow 0 \text{ forbiden})$

LS coupling - application to label electronic transitions

