Departamento de Química Inorgânica Química Geral I - IQG-114 - Prof. Roberto Faria 2ª Lista de Exercícios - Ligação Química

- 1. Desenhe as estruturas de Lewis para as seguintes espécies, incluindo a carga formal em cada átomo carregado eletricamente, a geometria molecular prevista para cada espécie, os orbitais híbridos que devem estar sendo utilizados pelo átomo central e, quando for o caso, todas as estruturas de ressonância e as cargas formais médias:
- a) BCl₃, O₃, CO₃²⁻, NO₂⁻, NO₃⁻, SO₂, SO₃, NO₂
- b) H₂S, NH₄⁺, ClO₄⁻, ClO₂, PCl₄⁺
- c) ICl₂, TeCl₄, ClF₃
- d) SF₆, XeF₄, ICl₄
- e) H₂CO₃, HNO₃, SOCl₂
- f) CO, NO
- 2. Para a molécula indicada abaixo, indique: a) para cada átomo, qual o orbital híbrido utilizado; b) quais ligações são σ e quais são π .

- 3. Para cada um dos híbridos indicados abaixo, indique as geometrias e os ângulos produzidos em cada caso: a) sp; b) sp²; c) sp³; d) sp³d²; e) sp²d; f) sp³d.
- 4. Com base na teoria da ligação de valência, usando orbitais híbridos, explique porque a energia da ligação dupla carbono-carbono, igual a 699 kJ/mol, não é o dobro da energia da ligação simples C-C (370 kJ/mol).
- 5. Com base na teoria da ligação de valência, usando orbitais híbridos: a) qual o valor esperado para o ângulo H-O-H na molécula da água? b) Como você explica que o valor experimental para esse ângulo seja de 104,5°? c) qual o valor esperado para o ângulo H-N-H na molécula do NH₃? d) Como você explica que o valor experimental para esse ângulo seja de 107°? e) Como você explica a diferença entre os ângulos experimentais H-O-H na água e H-N-H no NH₃?
- 6. Construa os diagramas de orbitais moleculares para as espécies de cada grupo: a) NO, NO⁺, NO⁺⁺; b) CO, CO⁺, CO⁺⁺. Em cada grupo, calcule a ordem de ligação e ordene as espécies em ordem crescente do comprimento de ligação
- 7. Construa os diagramas de orbitais moleculares para cada uma das espécies abaixo e indique em cada caso qual dessas espécies não devem existir e quais devem ser paramagnéticas (independendemente se devem existir ou não): a) Li_2 ; b) Be_2 ; c) B_2 ; d) C_2 .
- 8. a) Construa o diagrama de orbitais moleculares para o H_2^- ; b) Qual sua ordem de ligação? c) desenhe as formas dos orbitais moleculares σ_{1s} e σ_{1s}^* ; d) explique porque o orbital σ_{1s}^* é chamado de antiligante.
- 9. Considerando a teoria de orbitais moleculares, faça um esboço dos orbitais σ_{2p} , σ_{2p}^{*}, π_{2p} e π_{2p}^{*}.